
Performance Analysis
September 2009

Page 1

SOA Performance on Linux:
Process Entry Point

Tuning WebSphere and Linux for
Business Processes

Examining the Impact of Server
Virtualization and WebSphere Virtual
Enterprise on Business Processes in
the Linux Environment

Khoa Huynh
Vivek Kashyap
Mark Peloquin

IBM Systems & Technology Group

®

Performance Analysis
September 2009

Page 2

Contents

Abstract.. 3

1. Introduction ... 4

2. Background Information & Performance Evaluation Methodology... 4

2.1. WebSphere Application Server structure .. 4

2.2. WebSphere Process Server environment ... 4

2.3. WebSphere Virtual Enterprise environment .. 5

2.4. Benchmark... 6

3. Systems Configurations... 8

3.1. Hardware ... 8

3.2. Software... 9

4. Performance results ... 11

4.1. Tuning business process management (no clustering)... 11

4.2. Tuning dynamic operations with WebSphere Virtual Enterprise (WVE) 16

7. Conclusions and recommendations ... 27

References... 30

Performance Analysis
September 2009

Page 3

Abstract

This paper is the third in a series of white papers on service-oriented architecture (SOA) performance in
the Linux® environment. IBM has defined five SOA Foundation entry points to help a business get started
with SOA. This paper focuses on the third entry point – the Process entry point. We look at how to tune
hardware, Linux, WebSphere®, and DB2® components to improve performance for hosting business
processes implemented in Business Process Execution Language (BPEL). Additionally, we examine the
impact of server virtualization and WebSphere Virtual Enterprise dynamic operations on the performance
of business processes in the Linux environment. WebSphere Virtual Enterprise supports dynamic
operations by providing the capability to manage a dynamic cluster of application servers that can be
activated on a pool of physical servers in response to changes in the workload mix to meet user-defined
performance goals. We include IBM

®
 X-Architecture

®
 servers, as well as IBM Power servers with

PowerVM™ virtualization technology, in our study. For performance measurements, we use a
benchmark that models the business processes and Web services provided for a typical automobile
insurance company.

Performance Analysis
September 2009

Page 4

1. Introduction

IBM has defined five service-oriented architecture (SOA) Foundation entry points to help businesses get
started with SOA in their enterprise environment. These five entry points are People, Process,
Information, Connectivity, and Reuse [1]. This paper—the third in a series of white papers on SOA
performance in the Linux environment—focuses on the Process entry point, which encompasses the
Business Process and Service Choreography aspect of SOA. In particular, this paper takes a close look
at performance tuning of business process models implemented in Business Process Execution
Language (BPEL) using WebSphere products on Linux. We also look at the performance impact of
server virtualization and WebSphere Virtual Enterprise’s dynamic operations on business processes.

2. Background Information & Performance Evaluation Methodology

In this paper, we evaluate the performance of business processes implemented in BPEL utilizing the
service integration and choreography features of WebSphere Process Server (WPS) V6.1. Let us first
discuss some basic WebSphere terminology and structure.

WebSphere Process Server is an SCA-compliant runtime element that provides a fully converged,
standards-based process engine [3]. The foundation of WPS is the WebSphere Application Server, which
is the IBM implementation of the Java™ 2 Enterprise Edition (J2EE) platform and conforms to V1.4 of the
J2EE specifications [2].

2.1. WebSphere Application Server structure

A base WebSphere Application Server (WAS) installation includes everything needed for a single
application server instance. Additional server definitions can be logically grouped into nodes. A node can
contain many application servers, but cannot span multiple physical servers. A single physical server can
have multiple nodes installed on it, each with multiple managed application servers. Multiple nodes can
be grouped together into a node group or into another logical grouping called a cluster. A cell contains
one or more node groups, clusters, or both.

A WebSphere Network Deployment installation provides centralized administration and workload
management for a cell. A cell has a master administrative repository that holds the configuration
information for all nodes in the cell. There is a Deployment Manager through which all nodes in the cell
can be managed. The Deployment Manager has a graphical interface called the Integrated Solutions
Console through which a WebSphere administrator can perform everything from managing a node to
deploying an application to any node or cluster in the cell. The Deployment Manager communicates to
each node through a node agent. The node agent, which is a specialized application server, must be
started on a node before the Deployment Manager can find it.

WebSphere Virtual Enterprise extends the Network Deployment environment by providing on-demand
capabilities that allow a dynamic cluster of application servers to respond in real time to changing
workload demands, thereby improving the operational efficiency of the servers.

2.2. WebSphere Process Server environment

Every WebSphere Process Server (WPS) environment involves three fundamental layers: WPS
applications, a messaging infrastructure, and one or more relational databases. More specifically:

• WPS applications include the process server infrastructure code, such as the Business Process
Choreographer (BPC) and any user applications that exploit the process server functions. These
applications require a WPS application server to be installed and run.

Performance Analysis
September 2009

Page 5

• A messaging infrastructure is required for WPS and uses four WebSphere Service Integration
(SI) buses:

o Two buses for the Service Component Architecture (SCA) support (SCA.SYSTEM and
SCA.APPLICATION buses)

o One bus for the BPC (BPC SI bus)
o One bus for Common Event Infrastructure (CEI) asynchronous event publishing (CEI

bus)

When an application server (or a cluster of application servers) is added to an SI bus, a Message
Engine (ME) is created. The ME is the component in the WAS process which implements the
logic of the messaging infrastructure.

• Relational databases are required for WPS and the messaging infrastructure to store certain
application configurations, runtime information, and persistent data. Two main databases must
handle much of the traffic in a WPS environment:

o The Business Process Choreographer database (BPEDB), which stores data objects
related to business processes

o The Service Integration Bus database (SIBDB), which stores data objects for events and
message persistence

2.3. WebSphere Virtual Enterprise environment

In our setup, we also use WebSphere Virtual Enterprise (WVE) V6.1, which provides application server
virtualization, resource management, and a host of advanced operational facilities, such as performance
and health monitoring. This combination of capabilities is sometimes collectively referred to as dynamic
operations. One key feature of dynamic operations is that they can respond in real time to changes in the
workload mix (without human intervention if so desired) to ensure that performance goals set by the user
can be met. Following are the key elements and features of WVE:

• A dynamic cluster of application servers, which run the same applications. Applications are first
installed and configured on the dynamic cluster. They are then propagated to all active
application servers in the cluster.

• A service policy that defines a performance goal for one or more applications.

• An On-Demand Router (ODR), which is a gateway through which Web service requests flow to

the back-end dynamic cluster of application servers. The ODR’s primary functions include
classification of incoming requests, based on rules defined by the user, and intelligent request
routing, based on sense and response mechanisms from the back-end servers.

• A Web server, which is placed in front of the ODR as a trusted proxy server. In this study, we use

the IBM HTTP Server.

• Web service requests flow through the Web server and are intelligently routed to active
application servers in the dynamic cluster by the ODR, based on the performance information
collected from the cluster members. Workload is balanced across all servers in the cluster to
achieve the performance goals that are specified in the service policy. This dynamic workload
balancing is based on load distribution, service policy, and available resources. This capability is
provided by three autonomic managers associated with the ODR: the Application Placement
Controller (APC), Dynamic Workload Manager (DWLM), and Autonomic Request Flow Manager
(ARFM). They make decisions on health management, traffic shaping, and application placement
for the ODR.

Dynamic clustering in the WVE environment involves the clustering of WPS applications and the
messaging infrastructure. Conceptually, the clustering of WPS applications is not very different from
clustering plain J2EE applications in the WebSphere Application Server environment. WebSphere

Performance Analysis
September 2009

Page 6

clustering techniques in the static environment are also applicable to the dynamic WVE environment.
These techniques are discussed in Clustering WebSphere Process Server V6.0.2, Part 1: Understanding
the topology [4]; however, the messaging infrastructure is significantly more complex.

If a cluster of application servers is added to a Service Integration (SI) bus, each server in the cluster is
capable of running the Message Engine (ME) created for that cluster. However, only one server can
have an active instance of the Message Engine at any given time. A Message Engine can be configured
to work with WPS applications by using two approaches:

• The Message Engine is local to the cluster of WPS applications. In this case, the ME runs within
the same application cluster as the WPS applications.

• The Message Engine is located in its own cluster, separate from the WPS applications. This is
also called the “Silver” topology in a classification of WebSphere clustering topologies [4].

In this study, we consider both approaches.

2.4. Benchmark

In this study, we use a benchmark that models the business processes and Web services that are
provided for a typical automobile insurance company [10]. The benchmark specifies a macro workload
whose driver can generate an end-to-end workload similar to that of an actual production system in an
SOA environment. Figure 2.1 shows the components of the benchmark.

The benchmark, as considered in this paper, makes extensive use of IBM SOA platform products in the
following areas:

• Enablement of Web services, using IBM WebSphere Application Server (WAS)
• Business process choreography, using integration and choreography features of IBM WebSphere

Process Server (WPS)

In the benchmark, the Web services are implemented as part of a ClaimServices application. These Web
services represent typical services that are involved in the processing of an automobile insurance claim,
such as creating a claim, updating a claim, approving or denying a claim, checking insurance coverage,
generating a list of approved repair shops, selecting a repair shop, and informing the customer. Some
business logic is embedded in the implementation of these services. However, the presence of business
logic might hinder us in evaluating the performance of the underlying middleware layers supporting Web
services as well as investigating potential problems that might occur. As a result, we decided to run the
benchmark in Infrastructure Mode, which keeps the business logic in the Web services to a minimum; it
only performs minimal calculations and returns responses.

The processing of auto insurance claims is done through a Business Process Execution Language
(BPEL) application called HandleClaim. Figure 2.2 illustrates the HandleClaim application, which is
implemented using the business process choreography features that are provided by WebSphere
Process Server (WPS). After a customer submits a claim, the HandleClaim process calls an SCA
component called FraudCheck to determine whether the claim is fraudulent or not. If a claim is
fraudulent, it is rejected, and the processing of the claim is completed. On the other hand, if the claim is
found to be valid, an Adjuster is called upon to evaluate and update the claim. Next there is a business
rule which determines whether the value of the claim is less than $500. If so, the claim is approved
automatically; otherwise, it would have to be approved in person by an Underwriter. The actions of
Adjusters and Underwriters are simulated by another application – the HumanTaskSimulator – which
polls and performs the roles of adjusters and underwriters. After much experimentation, we found that
setting the parameters of the HumanTaskSimulator to the following values was more than adequate for
the workloads considered in this study:

• Number of adjusters = 30
• Number of underwriters = 20
• Polling period for adjusters = 200 ms

Performance Analysis
September 2009

Page 7

• Polling period for underwriters = 400 ms

Figure 2.1 – Architecture of benchmark used in our evaluation

After a claim is approved, a check is sent to the customer, and the processing of the claim is completed.
The underlying business logic of the claim services, such as creating, updating, rejecting, approving, and
completing a claim, is performed by calling the Web services implemented in the ClaimServices
application. In Figure 2.2, the claim services are represented by the rectangular boxes in blue.

The benchmark’s Workload Driver is a stand-alone, multithreaded HTTP client which can generate
concurrent insurance claim requests to the HandleClaim application using the Service Oriented Access
Protocol (SOAP) implemented on top of the HTTP transport protocol [9].\

In this paper, we consider both IBM X-Architecture and IBM Power Architecture

®
 server platforms.

In most of our tests, we start warm-up runs (which can take as long as 300 seconds depending on the
workload level) prior to actual data collection to ensure optimal and consistent results. Warm-up runs
were especially needed because, by default, the IBM Java Virtual Machine (JVM) in WebSphere
Application Server uses a higher optimization level for compiles, thus resulting in faster runtime
performance, but at the expense of slower server startups.

Business
Data

Submit
Claim

Call
Claim
Service

Workload Driver

Simulate
service

requestors

Human Tasks
Simulator

Adjuster

Underwriter

Handle Claim
Process

(Macro flow)

Handle Claim
process

(micro flow)

Web service
binding

Claim Service

Fraud Check
SCA component

Business Processes – Service Choreography

Claim Approval
Business Rule

Call center

Enterprise
Service Bus

Mediations

Route, transform and
adapt requests

Process
Human Tasks

Claim service
implementation
(Web service)

Service providers

Business
Data

Submit
Claim

Call
Claim
Service

Workload Driver

Simulate
service

requestors

Human Tasks
Simulator

Adjuster

Underwriter

Handle Claim
Process

(Macro flow)

Handle Claim
process

(micro flow)

Web service
binding

Claim Service

Fraud Check
SCA component

Business Processes – Service Choreography

Claim Approval
Business Rule

Call center

Enterprise
Service Bus

Mediations

Route, transform and
adapt requests

Mediations

Route, transform and
adapt requests

Process
Human Tasks

Claim service
implementation
(Web service)

Service providers

Claim service
implementation
(Web service)

Service providers

Performance Analysis
September 2009

Page 8

Figure 2.2 – Insurance claim processing workflows

3. Systems Configurations

3.1. Hardware

As mentioned previously, we consider both IBM X-Architecture and Power Architecture server platforms
for hosting the benchmark’s Web services and business processes.

3.1.1. IBM X-Architecture servers

In this study, we employ the IBM System x3850 M2 (Table 3.1), which implements the IBM eX4 chipset
[7,8], to host WebSphere, DB2, and the benchmark’s Web services and business process components.

Server IBM System x3850 M2

CPU 4 x 64-bit Quad-Core Intel® Xeon® Processor X7350 (2.93 GHz)

Memory 64 GB (667 MHz DDR2)

Network Integrated Dual-Port Gigabit Ethernet with TCP/IP offload engine

Table 3.1 – IBM System x3850 M2 configuration

The benchmark’s Workload Driver runs on an IBM System x3650 (Table 3.2).

Create
Claim

Create
Claim

Fraud
check

Fraud
check

Policy holder
Submits claim

Underwriter –
Approves / Denies
Claim (Human

Task)

Adjuster
Evaluates

Claim (Human
Task)

Fraud Check
(SCA call)

Approve Claim
(send check)

Yes
Auto

Approval

Reject
Claim

Auto accident

Is
Claim
Valid?

Manual
Approval

No

Complete
Claim

Complete
Claim

Update
Claim

Bus Rule:
Claim
<$500 ?

Calls to Claim Services

Create
Claim

Create
Claim

Fraud
check

Fraud
check

Policy holder
Submits claim

Underwriter –
Approves / Denies
Claim (Human

Task)

Adjuster
Evaluates

Claim (Human
Task)

Fraud Check
(SCA call)

Approve Claim
(send check)

Yes
Auto

Approval

Reject
Claim

Auto accident

Is
Claim
Valid?

Manual
Approval

No

Complete
Claim

Complete
Claim

Update
Claim

Bus Rule:
Claim
<$500 ?

Calls to Claim Services

Performance Analysis
September 2009

Page 9

Workload Driver IBM System x3650

CPU 2 x 64-bit Quad-Core Intel Xeon X5460 (3.16 GHz)

Memory 24 GB (667 MHz DDR2)

Network Integrated Dual-port Gigabit Ethernet

Table 3.2 – IBM System x3650 configuration

3.1.2. IBM Power architecture servers

For the Power platform, we use an IBM Power 570 (Table 3.3) [5] with POWER6™ processors [6] to host
WebSphere and the benchmark’s applications in some tests and two IBM OpenPower® 720 servers
(Table 3.4) [11] with POWER5™ processors in other tests.

Server IBM Power 570

CPU
2 x 64-bit Dual-Core IBM POWER6 (4.7 GHz), 4 MB L2 cache per core,
32 MB L3 cache shared per two cores

Memory 32 GB (667 MHz DDR2)

Network Dual-Port Gigabit Ethernet

Internal Storage 1 x SAS controller with 2 x 300 GB, 15K rpm SAS drives

Threading Simultaneous multi-threading (SMT) technology

Table 3.3 – IBM Power 570 configuration

Server IBM OpenPower 720

CPU
2 x 64-bit Dual-Core IBM POWER5 (1.5 GHz), 1.9 MB L2 cache, 36 MB
L3 cache

Memory 16 GB

Network Dual-Port Gigabit Ethernet

Internal Storage 1 x SAS controller with 4 x 36 GB / 72 GB 15K rpm SAS drives

Threading Simultaneous multi-threading (SMT) technology

Table 3.4 – IBM OpenPower 720 configuration

All servers are connected to a Cisco Systems Catalyst 3750 Series Gigabit Switch (Model WS-C3750G-
24TS-S).

3.2. Software

The Linux operating system on the IBM System x3850 M2 server is Novell SUSE Linux Enterprise Server
(SLES) 10 Service Pack (SP) 1 for AMD64 and EM64T (x86_64).

The Linux operating system on the IBM Power 570 and OpenPower 720 is Novell SUSE Linux Enterprise
Server (SLES) 10 Service Pack (SP) 1 for PPC (ppc64).

Performance Analysis
September 2009

Page 10

The operating system on the workload driver system (IBM System x3650) is Novell SUSE Linux
Enterprise Server (SLES) 10 Service Pack (SP) 2 for AMD64 and EM64T (x86_64).

All servers run with WebSphere Application Server (WAS) V6.1.0.17, WebSphere Process Server
V6.1.0.2, and WebSphere Virtual Enterprise V6.1.0.4.

Performance Analysis
September 2009

Page 11

4. Performance results

First let us look at how we can create an optimal, non-clustered hardware environment for the business
process management (BPM) components, such as WebSphere Process Server, DB2, etc., and how we
can tune those components to get the best throughput for our benchmark.

4.1. Tuning business process management (no clustering)

First, let us consider the setup illustrated in Figure 4.1.1 where everything runs on a single IBM Power
570 server. In this setup, both WPS and DB2 are installed on an IBM Power 570 with dual POWER6
processors (a total of four Processing Units or cores). Both HandleClaim and ClaimServices applications
are also installed and executed on this server. There is a single disk where the BPEDB, SIBDB, and all
WPS logs for transaction and compensation services reside. The data for this configuration is shown in
the first two rows in Table 4.1.1, under Configurations 1 and 1.1.

Figure 4.1.1 – Single server setup (Configurations 1 and 1.1)

Table 4.1.1 – Tuning business process management (non-cluster)

As you can see in Table 4.1.1:

• Default configuration: Configuration 1 shows the out-of-the-box configuration where there is
no tuning.

Result: In this configuration, the benchmark cannot even run. The default configuration for the
WAS JVM is too small to handle the necessary processing for the benchmark used in our study.

• JVM heap tuning: Configuration 1.1 shows what happens when we tune the WAS JVM heap
configuration. Two basic JVM heap parameters are the size of the heap and the garbage
collection policy. Several tools are available, such as the Tivoli Performance Viewer (included
with WebSphere), that can help analyze and monitor the heap usage and garbage collection so
that the heap can be specifically tuned for a particular workload. In our tests, by looking at the

HandleClaim

IBM Power 570

Java-
based

Workload
Driver

IBM x3650

ClaimServices

BPEDB
SIBDB
LOGS

WPS, DB2

HandleClaim

IBM Power 570

Java-
based

Workload
Driver

IBM x3650

ClaimServices

BPEDB
SIBDB
LOGS

WPS, DB2

Performance Analysis
September 2009

Page 12

number of memory pages allocated to the heap that are actually in use while the benchmark
scenarios are being run, we find that the heap usage is usually at 2048 MB. As a result, we set
the JVM heap size for WAS at 2048 MB. Because the Power 570 server has 32 GB of physical
memory, which is more than adequate for our tests, we set the minimum and maximum heap size
to the same value (2048 MB) to avoid the overhead of frequent heap size changes.

In addition to the JVM heap size, the garbage collection policy can also affect performance. The
WAS JVM supports four different garbage collection policies. The default garbage collection
policy is optthruput. However, we decided to use the gencon (Generation Concurrent)
garbage collection policy, which handles short-lived objects differently from long-lived objects,
because our earlier testing for Web service scenarios showed that the gencon policy was more

suitable for Web service scenarios [12]. Under the gencon policy, the heap is split into new and
old segments. Long-lived objects are promoted to the old space while short-lived objects are
garbage collected quickly in the new space (called a nursery). We also set the size of the nursery
to 1536 MB (75% of the total heap size) through the Integrated Solution Console (ISC):

1. Go to Servers → Application Servers → server name → Server Infrastructure →

Java and Process Management → Process Definition → Additional Properties →
Java Virtual Machine.

2. Set the Initial Heap Size and Maximum Heap Size fields to 2048 MB.

3. Enter –––– Xgcpolicy:gencon –Xmn1536M in the Generic JVM arguments field.

Result: Tuning the WAS JVM heap configuration allows the benchmark to run, but its overall
throughput is only 2.59 business transactions per second (BTPS). The data in Table 4.1.1 for
Configuration 1.1 shows that the CPU utilization for the IBM Power 570 server is 53% while the
disk utilization for the single disk is 99.6%. This single disk is obviously the system performance
bottleneck.

• Adding another server for DB2: Configuration 2 in Table 4.1.1 shows the result of our effort to
remove the single disk as the system performance bottleneck. First, we use another server – the
IBM x3850 M2 – as the DB2 server and move the BPEDB and SIBDB databases over to the disk
arrays attached to the x3850 M2. This configuration is illustrated in Figure 4.1.2. More
specifically, we partition the workload as follows:

o The x3850 M2 server runs the HumanTaskSimulator, DB2, and hosts the databases on

its disk arrays:
� BPEDB on a 24-disk array attached to the IBM System Storage™ DS3400

controller
� BPE logs on a 12-disk array attached to the IBM ServeRAID MR10M controller
� SIBDB on a 12-disk array attached to the same IBM ServeRAID MR10M

controller

o The Power 570 server now only runs WPS and the benchmark’s HandleClaim and
ClaimServices applications. We also make some additional improvements on this
server’s configuration:

� One disk for transaction logs only
� Another separate disk for compensation (recovery) logs only
� The WAS JVM heap size increased from 2048 MB to 4096 MB with the nursery

size set to 3072 MB (75% of the heap size)

Result: With these changes, the overall benchmark throughput is now 21.7 BTPS – a significant
improvement over 2.59 BTPS for Configuration 1.1.

Performance Analysis
September 2009

Page 13

Figure 4.1.2 – Separate WPS and DB2 servers (Configurations 2, 2.1, 2.2, and 3)

• WAS/WPS concurrency optimization: Configuration 2.1 in Table 4.1.1 shows the
performance impact of additional WAS and WPS tuning that maximizes concurrency. These are
recommended by the WebSphere Performance Teams [13]. In particular, since the Power 570
server has a total of four cores or eight logical CPUs with simultaneous multi-threading (SMT), we
follow the recommendations for eight CPUs in setting the following parameters:

o Thread pools:
� Default thread pool max = 200
� Web container’s thread pool max = 100

o Connection pools:
� BPEDB data source’s connection pool max = 150
� CEI ME data source’s connection pool max = 80
� SIBDB system data source’s connection pool max = 30
� SIBDB BPC data source’s connection pool max = 50

o J2C connection factories:
� BPECF connection pool max = 40
� BPECFC connection pool max = 40
� HTMCF connection pool max = 20

o J2C activation specifications:
� BPEInternalActivationSpec � Custom properties � maxConcurrency = 60
� <Benchmark> � Custom properties � maxConcurrency = 40

Result: With the concurrency optimizations, we essentially double the benchmark’s overall
throughput to 45.7 BTPS (as compared to 21.7 BTPS for Configuration 2).

• DB2 tuning: Configuration 2.2 in Table 4.1.1 shows the performance impact of applying DB2
tunings to optimize the log data rates. We set the following DB2 parameters:

o Max storage for lock list (4 KB) = 400
o Log buffer size (4 KB) = 512
o Log file size (4 KB) = 8000
o Number of primary log files = 10
o Number of secondary log files = 10
o Maximum number of active applications = 250
o Average number of active applications = 50
o Percent log file reclaimed before soft checkpoint = 300
o Percentage of lock lists per application = 20
o Buffer pool size (pages) = 64000

Result: As can be seen in Table 4.1.1, tuning DB2 delivers a benchmark throughput rate of
46.28 BTPS – only a small improvement (1.3%) over what we are able to get for Configuration
2.1. Table 4.1.1 also shows that this Configuration 2.2 has the CPU utilization of the WPS server
(Power 570) at 97% and the disk utilization at 67% and 60%, respectively, for transaction and

REC
LOG

TX
LOG

IBM Power 570

Java-
based

Workload
Driver

IBM x3650

BPEDB
SIBDB
BPE
LOGS

Disk Arrays

WPS DB2

IBM x3850 M2

HandleClaim

ClaimServices BPEDB
SIBDB
BPE
LOGS

BPEDB
SIBDB
BPE
LOG

REC
LOG

TX
LOG

IBM Power 570

Java-
based

Workload
Driver

IBM x3650

BPEDB
SIBDB
BPE
LOGS

Disk Arrays

WPS DB2

IBM x3850 M2

HandleClaim

ClaimServices BPEDB
SIBDB
BPE
LOGS

BPEDB
SIBDB
BPE
LOG

Performance Analysis
September 2009

Page 14

compensation (recovery) logs. This indicates that the system performance bottleneck is no
longer the disk subsystem, but rather, the Power 570’s two dual-core POWER6 processors.
Adding more processors to the WPS Server would certainly increase the benchmark throughput –
provided that some J2C Connection Factories and Activation Specifications would also be
increased to accommodate the higher number of processors as recommended by the
WebSphere Performance Team [13].

• Cache mirroring in the IBM System Storage DS3400: Configurations 3 and 3.1 in Table
4.1.1 show the performance impact of the cache mirroring capability in the DS3400. Starting with
Configuration 3, we also use a more powerful Power 570 server. Cache mirroring, which is the
default setting on the DS3400, can remain enabled for reliability or availability reasons. In our
setup, the BPEDB disk array is attached to the DS3400 controller. In Configuration 3, in order to
achieve higher benchmark throughput, we disable cache mirroring. In Configuration 3.1, we
leave the cache mirroring enabled (the default setting).

Result: As we can see in Table 4.1.1, with cache mirroring enabled, the disk array utilization for
BPEDB jumps from 30% to 47%, and the benchmark throughput drops from 61.12 BTPS to 55.84
BTPS – an 8.6% performance drop. This is a classic trade-off between performance and
reliability/availability.

• Reducing WAS JVM heap size in memory-constrained environment: Configuration 3.2 in
Table 4.1.1 shows the impact of reducing the WAS JVM heap size from 4096 MB to 2048 MB.
This could be necessary in memory-constrained environments.

Result: Reducing the WAS JVM heap from 4096 MB to 2048 MB drops the benchmark’s overall
throughput from 55.84 BTPS to 44.56 BTPS, a significant 20% performance drop. As a result, it
is highly recommended that the WAS JVM heap be adjusted accordingly after adding CPUs to
the WPS server.

• Write-back caching in IBM ServeRAID MR10M controller: Configuration 3.3 in Table 4.1.1
shows what happens when we use write-through caching policy in the MR10M disk array
controller (instead of write-back). Write-back caching is always good for the performance of disk
writes because the disk write operations are considered done as soon as the data is written to the
cache (instead of physical disks). Data in the cache would then be written (“flushed”) to physical
disks at a later time. However, in an environment where there is no battery backup for the
controller or for the disk subsystem, write-through caching could help protect the integrity of data
when there is a power outage. In our setup, the SIBDB and BPE log disk arrays are attached to
the MR10M controller.

Result: Using the write-though caching policy for the SIBDB disk array results in a 6%
performance drop – from 44.56 BTPS with write-back caching in Configure 3.2 to 41.79 BTPS
with write-through caching in this Configuration 3.3. Note that, for Configuration 3.3 in Table
4.1.1, the utilization of the disk array for BPEDB jumps to 70% because we now use a single 24-
disk array for both BPEDB and BPE logs. However, our test data (not shown in Table 4.1.1)
indicates that the 70% utilization of the disk array does not have any noticeable impact on the
benchmark throughput. This is because, even at 70% utilization, the disk I/O queue depth for the
24-disk array is still less than 1, indicating that the disk array is not the performance bottleneck.
In fact, this is lower than the CPU utilization (75%) for the WPS server.

• Linux logical disk striping: In Configurations 3 and 3.1, the utilization for the disks holding the
transaction log and compensation (recovery) log on the WPS server is quite high – around 80%
for transaction log and 75% for compensation log. While this is still lower than the CPU
utilization, it would be interesting to try to lower the disk utilization and see if that would have any
impact on the benchmark’s overall throughput. We do not have any extra disk array controller
that could be installed in the WPS server, but we have two extra disks that could be used to set
up a four-disk logical array through the Linux Logical Volume Manager (LVM) to handle both
transaction and compensation log traffic.

Performance Analysis
September 2009

Page 15

Result: Table 4.1.2 shows the results. For a four-disk logical array, the stripe size of 64 KB
provides better performance than smaller stripe sizes of 4 KB and 16 KB, given that the size of
each log data write is between 4 KB and 5 KB. The utilization of the device manager is found to
be over 90% while the utilization of each individual disk ranges from 27% to 36%. However,
dedicating a single disk to each log, without any logical disk striping, produces the best
benchmark throughput, even though we use only two disks and each disk is used more than 75%
of the time. This indicates that the overhead of the Linux logical volume manager in managing a
logical disk array has a negative performance impact when it comes to transaction and
compensation logs on the WPS server. As a result, for the rest of our study, we dedicate a single
physical disk for each WPS log.

Table 4.1.2 – Logical disk striping (through Linux Logical Volume Manager)

• Linux large (huge) page support: We configure large (huge) pages (16 MB page size) on the

Power 570 server (WPS server) for the WAS JVM heap and find that it does not result in any
performance improvement. In fact, with large page support, the benchmark’s overall throughput
decreases from 61.12 BTPS (Configuration 3) to 59.70 BTPS, a performance degradation of
about 2%. As a result, for the remainder of this study, we do not configure large pages.

Figure 4.1.3 shows the cumulative performance improvement as we go from the default (out-of-the-box)
configuration to tuning DB2. The tuning items are shown in a chronological order from left to right in the
figure.

It should also be noted that the x3650 server that hosts the benchmark’s Workload Driver does not have
any impact on our performance results because the CPU utilization of this server is less than 5% and the
utilization of the only disk used on this server is less than 6%.

Performance Analysis
September 2009

Page 16

Cumulative Performance Improvement
Tuning Business Process Management

Non-Clustered Environment

0

5

10

15

20

25

30

35

40

45

50

Out Of The Box JVM Heap (2GB,

gencon)

Add DB2

Server+Disk

Arrays

WAS/WPS

Concurrency

DB2 Log Tuning

Tuning Actions (Performed in Chronological Order From Left to Right)

B
e
n

c
h

m
a
rk

's
 O

v
e
ra

ll

T
h

ro
u

g
h

p
u

t
(B

T
P

S
)

Figure 4.1.3 – Cumulative Impact of BPM Tuning Actions in Non-Clustered Environment

4.2. Tuning dynamic operations with WebSphere Virtual Enterprise (WVE)

In this section, we evaluate a virtual, goals-driven, autonomic environment for SOA applications like the
benchmark used in this study. We use WebSphere Virtual Enterprise (WVE) to create this environment,
which is illustrated in Figure 4.2.1.

The dynamic cluster of WPS servers, called application cluster in Figure 4.2.1, consists of WPS servers
on which the benchmark’s applications are deployed. These applications include HandleClaim and
ClaimServices applications, denoted as B and S, respectively. In response to an increase in workload
demands or an on-going failure to meet a service policy’s performance objective, WebSphere Virtual
Enterprise’s autonomic managers can start an instance of WPS server on the x3850 M2 server or on any
of the two logical partitions (LPARs) on the OpenPower 720 server. Based on the results in Section 4.3,
each instance of the WPS server has a single disk for transaction log and another single disk for
compensation (recovery) log. In Figure 4.2.1, the LPARs are virtualized with PowerVM technology, so I/O
operations to these (virtual) disks must go through the Virtual I/O Server (VIOS). The LPARs use shared,
capped virtual CPUs. In general, it is recommended that we configure shared, uncapped virtual CPUs
across the LPARs; however, in this study, the number of (virtual) CPUs that each LPAR is allowed to use
is capped so that we can more accurately measure the workload impact on each LPAR and the
performance impact of logical partitioning.

By default, there can only be a maximum of one WPS server instance per node in the dynamic application
cluster.

The service policy in WVE only allows two types of performance goals to be specified – the average
response time or the percentile response time goals. In this study, we use the average response time
goal for simplicity. To set a reasonable response time goal, we examine the response times reported in

Performance Analysis
September 2009

Page 17

Table 4.2.1 for all configurations that we evaluate in this study. We note that the best response time that
we are able to achieve is about 14 ms. As a rule of thumb (best practices), the average response time
goal should be at least two times higher than the best response time observed on a lightly loaded cluster.
Consequently, we set the average response time goal in the service policy to be 30 ms. This should
enable the autonomic managers to activate additional WPS servers (instances) when the average
response time for claim requests exceeds 30 ms (the performance goal). Setting the average response
time goal too close to 14 ms would never result in additional servers to be started because the autonomic
managers would determine that starting additional servers would not improve the chances of meeting the
performance goal.

We specify the service policy to be applicable to HTTP and SOAP requests that are handled by the
benchmark’s applications. We also assign the highest priority to this service policy.

We use the default settings for the On-Demand Router (ODR) and its associated autonomic managers.

As described in Section 2.3, there are two approaches to cluster the Message Engines (MEs):

• The Message Engines are local to the dynamic application cluster.
• The Message Engines are in their own cluster (called ME Cluster), separate from the dynamic

application cluster.

In this section, we consider both approaches and see which one performs better. In those configurations
where the ME Cluster is configured, it runs on the x3850 M2 server. As such, the ME Cluster is a static
cluster.

Figure 4.2.1 – Dynamic application cluster with separate cluster for Message Engines

IBM OpenPower 720

Java-
based

Workload
Driver

IBM
HTTP
Server

On-
Demand
Router
(ODR)

Deployment
Manager

Node
Agent

B

S

LPAR 1

B

S

WPS

BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS

Disk Arrays

IBM x3850 M2

Node
Agent

B

S

WPS Human Task
Simulator

SCA SYS

SCA APP

ME Cluster

DB2

DB2

Adjusters
Underwriters

BPEDB
SIBDB
LOGS

Node Agent

LPAR 2

Node
Agent

VIOS

RECOVERY
LOGS

TRANSACT
LOGS

TRANSACT
LOGS

RECOVERY
LOGS

B

S

WPS

IBM x3650

Integrated
Solution
Console

ClaimServices Application

HandleClaim Application

Application Cluster

IBM OpenPower 720

Java-
based

Workload
Driver

IBM
HTTP
Server

On-
Demand
Router
(ODR)

Deployment
Manager

Node
Agent

B

S

LPAR 1

B

S

WPS

B

S

WPS

BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS

Disk Arrays

IBM x3850 M2

Node
Agent

B

S

WPS Human Task
Simulator

SCA SYS

SCA APP

ME Cluster

DB2

DB2

Adjusters
Underwriters

BPEDB
SIBDB
LOGS

Node Agent

LPAR 2

Node
Agent

VIOS

RECOVERY
LOGS

TRANSACT
LOGS

TRANSACT
LOGS

RECOVERY
LOGS

B

S

WPS

B

S

WPS

IBM x3650

Integrated
Solution
Console

ClaimServices Application

HandleClaim Application

Application Cluster

Performance Analysis
September 2009

Page 18

In general, for the configurations considered in this section, the physical servers host the following
components (see Figure 4.2.1):

• IBM x3650 server
o Benchmark’s Java Workload Driver
o WebSphere Deployment Manager
o IBM HTTP Server (Web Server)
o WebSphere On-Demand Router (ODR)
o WebSphere Node Agent

• IBM x3850 M2 server

o DB2, hosting SIBDB and BPEDB databases (including their logs)
o Benchmark’s HumanTaskSimulator, simulating the actions of adjusters and underwriters
o WPS server (initial instance – unless otherwise specified), hosting the benchmark’s

HandleClaim and ClaimServices applications
o WebSphere Node Agent
o ME Cluster (if configured)

• IBM OpenPower 720 server (VIOS with 0.5 POWER5 core, LPAR1 with 1.5 POWER5 cores,

LPAR2 with 2.0 POWER5 cores)
o Virtual I/O Server (VIOS)
o LPAR1: WPS server (one instance maximum) and WebSphere Node Agent
o LPAR2: WPS server (one instance maximum) and WebSphere Node Agent

On the x3850 M2 server, the BPEDB database is hosted on a 24-disk array managed by the IBM System
Storage DS3400 controller. Because of the large amount of disk writes, the BPEDB log resides on a
separate 12-disk array that is attached to the IBM ServeRAID MR10M adapter. The SIBDB database and
its log are hosted on another 12-disk array that is attached to the same MR10M adapter. As in Section
4.3, each WPS server has two disks, one dedicated for the transaction log and one for the compensation
(recovery) log. For optimal performance, cache mirroring is disabled for the DS3400 controller and the
write-back caching policy is used for the MR10M controller. In addition, all of the WPS and DB2 tuning
items, discussed in Section 4.3, are applied to the WVE environment.

For the remainder of this paper, we denote the maximum number of concurrent insurance claim requests
generated by the benchmark’s Workload Driver as Max Tx and the number of threads used to generate
this traffic as simply Threads. We will look at two performance measurements: the number of business
transactions per second (BTPS), as reported by the benchmark, and the average response time for
service requests, as reported by WebSphere Virtual Enterprise.

Let us first consider the configurations with the Message Engines in a separate cluster (ME Cluster). The
performance results for these configurations are shown in Table 4.2.1.

• Single node performance (with separate ME Cluster): Configuration 5 in Table 4.2.1 shows
what can be achieved with a single node (the x3850 M2 server) in the dynamic cluster. The
dynamic application cluster is put in Manual Mode, so that the autonomic managers do not
attempt to activate additional WPS servers on the other nodes – even when the average
response time exceeds the performance goal of 30 ms.

Result: With the Workload Driver using two threads to generate a maximum of 60 concurrent
requests (Max Tx = 60, Threads = 2), the x3850 M2 is able to handle an average of 28.29 BTPS.
The CPU utilization on the x3850 M2 is 83% and the disk subsystem still has quite a bit of
bandwidth available (the disk I/O queue depth is less than 0.60). The average response time for
the claim requests ranges from 22.85 ms with a Max Tx of 20 to 52.74 ms with a Max Tx of 60.
Setting the maximum number of concurrent requests higher than 60 introduces some instability:
only a few runs are completed successfully as the CPU utilization moves above 90%.

Performance Analysis
September 2009

Page 19

Table 4.2.1 – Performance data for dynamic cluster configurations

• Multi-node performance (with separate ME Cluster): Configuration 5.1 in Table 4.2.1 shows

that we can achieve higher service rates when we put the dynamic application cluster in
Automatic Mode. This allows the On-Demand Router’s autonomic managers to activate
additional servers on the OpenPower 720’s LPARs automatically (without human intervention) to
help handle the workload generated by the benchmark’s Workload Driver. This configuration is
illustrated in Figure 4.2.1.

Initially, after we turn on the benchmark’s Workload Driver (with Max Tx = 20, Threads =1), the
initial WPS server running on the x3850 M2 takes a while to warm up. During this warm-up
period, the average response time for service requests exceeds the service goal of 30 ms for
more than 30 seconds, as shown in Figure 4.2.2. The autonomic managers sense this condition,
and generate a runtime task to activate additional WPS servers on the cluster’s remaining nodes.
The runtime task appears on the System Administration View of the Integrated Solutions Console
(ISC) at approximately 2 minutes after the start of the run. Since the application cluster is in
Automatic Mode, the runtime task starts immediately without further human intervention after it
appears on the ISC. It takes about 2 minutes for the new WPS servers to be activated on the two
LPARs on the OpenPower 720 server. Finally, about 4 minutes after the start of the run, the
WPS servers on the LPARs start running. Of course, these new servers need time to warm up
and that is the reason for the initial high response times recorded on these servers.

In the mean time, as the new WPS servers are starting on the LPARs, their Message Engines are
starting to run in the ME cluster on the x3850 M2, causing the average response time on the
x3850 M2 server to jump higher as well. However, after about 90 seconds, the average response
time on the x3850 M2 starts to stabilize and falls to about 18.77 ms – well below the service goal
of 30 ms and better than the best average response time in the single-node configuration
(Configuration 5). This shows the benefit of offloading the workload to new additional servers in
the dynamic cluster. However, on the OpenPower 720, the LPARs (with 1.5 POWER5 cores for
LPAR1 and 2.0 POWER5 cores for LPAR2) that host the new servers are not powerful enough to
achieve a response time of less than 30 ms for the service requests sent to them. Because of
this, the maximum throughput data collected at each node indicates that the On-Demand Router
routes more service requests to the more powerful x3850 M2 server than to the two POWER5
LPARs.

Performance Analysis
September 2009

Page 20

Dynamic Workload Management

w/ WebSphere Virtual Enterprise

0

100

200

300

400

500

600

700

800

0 30
1:
00

1:
30

2:
00

2:
30

3:
00

3:
30

4:
00

4:
30

5:
00

5:
30

6:
00

6:
30

Time (Min:Sec)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
) x3850M2 (4 x 4-Core Intel

X7350)

P5 LPAR (PowerVM, 1.5 PUs)

P5 LPAR (PowerVM, 2 PUs)

Service Goal

Figure 4.2.2 – WebSphere Virtual Enterprise’s autonomic managers activating additional WPS
servers

After everything settles down, the best benchmark throughput that we can get for this multi-node
configuration is 35.56 BTPS, a 25% improvement over the single-node configuration. In addition,
as can be seen in Table 4.2.1, the multi-node configuration provides more stability at much higher
workloads (up to Max Tx = 160, Threads = 4) than the single-node configuration. At the highest
workloads (Max Tx = 160, Threads = 4), the CPU utilization is 92%, 93%, and 86% for LPAR1,
LPAR2, and x3850 M2 servers, respectively, indicating that we are running out of CPU bandwidth
on the LPARs. The disk subsystem is still okay, with the maximum I/O queue depth of 1.04 and
the disk with the highest utilization (70%) being the compensation log disk in LPAR2.

Figure 4.2.3 shows the throughput that is contributed by each node in the dynamic cluster. As
the workload increases, the throughput at the LPARs begins to level off, running out of CPU
bandwidth. However, with 16 processor cores, the x3850 M2 just keeps going while the ODR
sends more requests to it.

• Multi-node performance (with separate ME Cluster and without PowerVM): Configuration
5.2 in Table 4.2.1 shows the benchmark throughput when we effectively remove the PowerVM
virtualization layer from the OpenPower 720 server. In the previous configuration (Configuration
5.1), because we are running out of CPU bandwidth and the disk utilization is high on the LPARs
with Max Tx = 160 and Threads = 4, removing the virtualization layer might result in higher
benchmark throughput. To do this, we only configure a single LPAR on the OpenPower 720
server, assign all CPUs (4 cores) and memory to this single LPAR, and remove the Virtual I/O
Server (VIOS). All I/O operations now go directly to the disk subsystem without going through the
VIOS, reducing the I/O latency. This configuration is illustrated in Figure 4.2.4.

Performance Analysis
September 2009

Page 21

Node Throughput
(As Seen By WebSphere Virtual Enterprise's Autonomic Managers)

3-Node Dynamic Cluster with Remote ME Cluster and PowerVM

0

5

10

15

20

25

30

1, 20 1, 40 1, 60 2, 60 2, 80 3, 80 3, 100 4, 160

Threads, MaxTx

T
h

ro
u

g
h

p
u

t
(B

T
P

S
)

x3850 M2 (16-core)

P5 LPAR (1.5-core)

P5 LPAR (2-core)

Figure 4.2.3 – Node throughput as reported by WebSphere Virtual Enterprise

Result: As can be seen in Table 4.2.1, this configuration is now able to support up to 6 threads
with MaxTx = 160, and the overall benchmark throughput is now 40.47 BTPS, a 14%
improvement over Configuration 5.1. The CPU utilization on the x3850 M2 server now moves
above 90%, but the disk subsystem still has available bandwidth because the disk I/O queue
depth is 1.26 and the highest disk utilization is only 50%. If we look at the data for MaxTx = 160,
Threads = 4 and compare it against the data for the same workload in the previous configuration,
we see that the average response time on the single 4-core LPAR is less than half the response
times observed on the 1.5-core LPAR1 and 2-core LPAR2 in the previous configuration. While
the maximum throughput observed at the single 4-core LPAR is about 10% higher than the sum
of maximum throughput for both LPAR1 and LPAR2 in the previous configuration, it is interesting
to note that the performance of the WPS server running on the x3850 M2 is also better (that is,
lower average response time, higher maximum throughput). This indicates that a single 4-core
LPAR can offload more workload from the x3850 M2 than both the 1.5-core LPAR1 and 2-core
LPAR2 can in the previous configuration. Later on in this paper, we will measure the
performance impact of the VIOS more accurately.

• Single-node performance (with local Message Engines): Configuration 6 in Table 4.2.1
shows the performance data when using only a single node (x3850 M2) with local Message
Engines running in the same dynamic cluster as the WPS servers.

Result: The data indicates that, for this single-node configuration with local Message Engines,
the benchmark throughput is much higher, and the average response time is much lower, than in
Configuration 5 where we have remote Message Engines located in a separate cluster.
Depending on the workload level, the extra latency in going to Message Engines in a remote
cluster results in 30% - 60% drop in the benchmark throughput and 25% - 40% jump in the
average service response time. Consequently, having the Message Engines running locally in

Performance Analysis
September 2009

Page 22

the same cluster as the applications is faster in the single-node configuration, but it severely limits
the scalability of a multi-node configuration, a fact that is very obvious when we consider the next
configuration.

Figure 4.2.4 – Dynamic application cluster with separate ME Cluster but without PowerVM

• Multi-node performance (with local Message Engines): Configuration 6.1 in Table 4.2.1

shows the performance data obtained for a two-node application cluster with local Message
Engines. This application cluster is illustrated in Figure 4.2.5. When we start the Workload
Driver, the initial WPS server runs on a two-core POWER5 LPAR. As the CPU utilization on this
LPAR quickly rises above 90%, and the average service response time is far above the service
goal of 30 ms, the autonomic managers generate a runtime task to activate the remaining node
(the x3850 M2) in the cluster. However, even after a new WPS server is started on the x3850
M2, most (approximately 80%) of the workload still goes to the initial node (the two-core
POWER5 LPAR), leaving the second node (the x3850 M2) under-utilized – the CPU utilization on
the x3850 M2 is only 13%. The benchmark’s overall throughput (9.4 BTPS) is much smaller than
in the case with remote Message Engines (35.56 BTPS). This is because of a design limitation
for the Service Integration (SI) buses: if a Message-Driven Bean (MDB) has a local ME available,
it is always forcibly “bound” to it, even if the ME is inactive. Because only one ME instance can
be active at any given time, only one WPS server can have active instances of that MDB. In
other words, all but one of the WPS servers in the cluster is essentially in stand-by mode. This
imposes serious limitation on the overall scalability of the dynamic cluster if we have long-running
business processes or asynchronous SCA invocations. As a result, for multi-node dynamic
clusters, we recommend configuring the Message Engines in a separate cluster. The
WebSphere clustering topologies are classified into three types [4]:

o Bronze topology, where all components (WPS applications, Message Engines, CEI) are
run in a single cluster

o Silver topology, where there are two separate clusters: one for WPS applications and
CEI, and one for the Message Engines

IBM OpenPower 720

Java-
based

Workload
Driver

IBM
HTTP
Server

On-
Demand
Router
(ODR)

Deployment
Manager

Node
Agent

B

S

LPAR 1

B

S

WPS

BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS

Disk Arrays

IBM x3850 M2

Node
Agent

B

S

WPS Human Task
Simulator

SCA SYS

SCA APP

ME Cluster

DB2

DB2

Adjusters
Underwriters

BPEDB
SIBDB
LOGS

Node Agent

RECOVERY
LOGS

TRANSACT
LOGS

IBM x3650

Integrated
Solution
Console

ClaimServices Application

HandleClaim Application

Application Cluster

IBM OpenPower 720

Java-
based

Workload
Driver

IBM
HTTP
Server

On-
Demand
Router
(ODR)

Deployment
Manager

Node
Agent

B

S

LPAR 1

B

S

WPS

B

S

WPS

BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS

Disk Arrays

IBM x3850 M2

Node
Agent

B

S

WPS Human Task
Simulator

SCA SYS

SCA APP

ME Cluster

DB2

DB2

Adjusters
Underwriters

BPEDB
SIBDB
LOGS

Node Agent

RECOVERY
LOGS

TRANSACT
LOGS

IBM x3650

Integrated
Solution
Console

ClaimServices Application

HandleClaim Application

Application Cluster

Performance Analysis
September 2009

Page 23

o Gold topology, where there are separate clusters for WPS applications, CEI, and
Message Engines

Because the benchmark that is used in this study does not generate many events, the Silver
topology is the most suitable topology. Figure 4.2.6 shows the impact of messaging infrastructure
clustering on the benchmark throughput.

In this Configuration 6.1, the WPS server running on the two-core POWER5 LPAR is the initial
node; therefore, with local Message Engines, most of the traffic goes there and the benchmark
throughput is only a meager 9.40 BTPS. What if we made the x3850 M2 the initial node? In this
case, most of the traffic would be routed to the x3850 M2. Because the x3850 M2 is much more
powerful than the two-core POWER5 LPAR, the benchmark’s throughput is 34.62 BTPS – almost
four times higher than in the case of the two-core POWER5 LPAR being the initial node (with the
exact same settings for the Workload Driver). The CPU utilization is 65% and 9% on the x3850
M2 and the POWER5 LPAR, respectively, confirming that most of the traffic is indeed routed to
the initial x3850 M2 node.

• Virtual I/O Server (VIOS) impact: We know that the VIOS introduces additional latency to disk
I/O operations. In Configuration 6.2, we remove the VIOS partition; therefore, disk writes to the
transaction and compensation logs no longer go through VIOS. At the same workload driver
settings (Max Tx = 20, Threads = 1), the data in Table 4.2.1 indicates that removing the VIOS
reduces the average service response time from 70.41 ms to 54.82 ms, a 22% improvement over
the configuration with VIOS. Let us take a closer look at the transaction and compensation log
disks which are attached to the POWER5 LPARs. Table 4.2.2 shows the disk performance
statistics for Configuration 6.1 (with VIOS) and Configuration 6.2 (without VIOS). The number of
disk writes and the amount of written log data are similar in both configurations, as expected.
However, without VIOS, we are able to obtain:

o Higher overall throughput for the benchmark (11.27 BTPS vs. 9.40 BTPS)
o Lower disk I/O queue depth
o Lower I/O service times
o Low disk utilization (as seen from Linux)

However, it should be noted that the PowerVM virtualization technology also allows us to
configure the log disks as dedicated I/O devices to the LPARs so that disk writes to those disks
do not have to go through VIOS. We will look at the performance of the disk subsystem in more
detail later in the paper.

• Adding more CPUs (or using shared, uncapped LPAR mode): With the initial WPS server

running on a two-core POWER5 LPAR, most of the workload traffic goes there, pushing the CPU
utilization on the LPAR close to 100%. Configuration 6.3 in Table 4.2.1 shows what we are able
to get when we assign more POWER5 cores to the LPAR. This is effectively the same as if we
configure the LPAR to run in shared, uncapped mode where the LPAR could use the remaining
(idle) processor cores on the OpenPower 720 server if needed. Indeed, this is one of the key
advantages of the PowerVM virtualization technology: we can configure an LPAR with a small
number of processor cores initially, and then, as the workload demand increases, this LPAR can
grow to the full size of the physical server. In this configuration, the LPAR now has a total of 4
POWER5 cores, and as a result, the CPU utilization drops from 92% to 55% while the average
service response time on this LPAR drops from 54.82 ms to 37.46 ms, given the same settings
for the Workload Driver.

Performance Analysis
September 2009

Page 24

Table 4.2.2 – Impact of VIOS

Figure 4.2.5 – Dynamic application cluster with local Message Engines

• Disk I/O performance: Table 4.2.3 provides the disk I/O statistics for Configuration 5.1 (three
nodes: 1.5-core POWER5 virtualized LPAR, 2-core POWER5 virtualized LPAR, 16-core x3850
M2) and Configuration 5.2 (two nodes: 4-core POWER5 LPAR without VIOS, 16-core x3850
M2). The data is provided for both light workload (Max Tx = 20, Threads = 1) and heavy
workload (Max Tx = 160, Threads = 4). Both configurations have Message Engines in a separate
cluster (ME Cluster). The data indicates that, for an SOA application such as the benchmark
used in this study, from a performance perspective, it is better to use the entire OpenPower 720
server as a single partition without PowerVM technology than configuring LPARs with VIOS. In
addition, we note the following from the data:

o For the disks attached to the virtualized LPARs, the extra latency in going through the

Virtual I/O Server (VIOS) results in higher I/O service times and higher disk utilization (as
seen from Linux). With VIOS, the I/O service times can reach as high as 15 ms, whereas
without VIOS, the I/O service times are always less than 4 ms. Similarly, the disk
utilization data (collected at the operating system level) can reach as high as 70% with
VIOS while it always stays below 50% without VIOS. However, the disk I/O queue depth
in all cases is less than 1, indicating that this is strictly an I/O latency issue and that the
disk subsystems are not really the performance bottleneck in the configurations that we
consider in this study.

IBM OpenPower 720

Java-
based

Workload
Driver

IBM
HTTP
Server

On-
Demand
Router
(ODR)

Deployment
Manager

Node
Agent

B

S

BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS

Disk Arrays

IBM x3850 M2

B

S

WPS Human Task
Simulator

SCA
SYS

SCA
APP

ME

DB2

DB2

Adjusters
Underwriters

BPEDB
SIBDB
LOGS

Node Agent

RECOVERY
LOGS

TRANSACT
LOGS

IBM x3650

Integrated
Solution
Console

ClaimServices Application

HandleClaim Application

Application Cluster

LPAR 1

B

S

WPS

Node
Agent

ME

IBM OpenPower 720

Java-
based

Workload
Driver

IBM
HTTP
Server

On-
Demand
Router
(ODR)

Deployment
Manager

Node
Agent

B

S

BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS
BPEDB
SIBDB
LOGS

Disk Arrays

IBM x3850 M2

B

S

WPS Human Task
Simulator

SCA
SYS

SCA
APP

ME

DB2

DB2

Adjusters
Underwriters

BPEDB
SIBDB
LOGS

Node Agent

RECOVERY
LOGS

TRANSACT
LOGS

IBM x3650

Integrated
Solution
Console

ClaimServices Application

HandleClaim Application

Application Cluster

LPAR 1

B

S

WPS

Node
Agent

ME

Performance Analysis
September 2009

Page 25

o Even under the heaviest workload conditions considered in this study, there is still quite a
bit of available bandwidth left on the disk arrays: the disk I/O queue depth is mostly less
than 1 and the utilization is mostly less than 50%. Even under the heaviest workload, the
queue dept is only 1.24.

o Data writes to the BPEDB database tend to be “bursty” in nature (based on the disk I/O
queue depth and the disk utilization data). In contrast, data writes to the SIBDB database
and to the logs (BPE, transaction, compensation) occur evenly over time (that is, the disk
I/O queue depth data matches well with the disk utilization data).

o Data writes to the disk arrays are in the sub-millisecond range, indicating that write-back
caching is in effect and very effective, especially since there is not much I/O waiting in the
queues. However, the MR10M controller delivers better performance (in terms of I/O
service times) because its cache is located much closer to the server than in the case of
the DS3400 controller where the controller is located remotely from the server over the
fiber links.

Impact of Messaging Infrastructure Clustering
3-Node = 16-core x3850 M2 + 1.5-core P5 LPAR + 2-core P5 LPAR

2-Node = 16-core x3850 M2 + 4-core P5 LPAR (no VIOS)

0

5

10

15

20

25

30

35

40

45

3-Node w/ ME Cluster 2-Node w/o PowerVM 3-Node w/ Local Message

Engines

Configuration

O
v
e
ra

ll
 T

h
ro

u
g

h
p

u
t

(B
T

P
S

)

Figure 4.2.6 – Impact of Message Engine clustering on overall throughput

• Tuning the On-Demand Router (ODR): The WVE test team recommends that the JVM heap
size for the ODR should be at least 1024 MB and that the garbage collection policy should be
Generational Concurrent (gencon) with the noAdaptiveTenure setting. However, because the
service request rates in this study are fairly small (less than 100), this ODR tuning does not make
much difference in the benchmark’s overall throughput. For this study, the default JVM heap
configuration for the ODR works just as well.

• Workload driver: The benchmark’s Workload Driver, the IBM HTTP Server, the On-Demand

Router, and the WebSphere Node Agent are hosted on the x3650 server. The CPU utilization of
this server is less than 5% and the utilization of the only disk used on this server is less than 6%,
indicating that this server does not have any negative impact on our performance results.

Performance Analysis
September 2009

Page 26

Table 4.2.3 – Performance statistics for disk subsystems

Performance Analysis
September 2009

Page 27

7. Conclusions and recommendations

Based on the data analysis in Section 4, we can draw the following conclusions and recommendations:

• Tuning business process management in a nonclustered environment

o As with other WebSphere facets, the WebSphere JVM heap configuration for the WPS
server is important. For the BPM scenarios considered in this paper, the default JVM
heap size is too small. At least 2048 MB is recommended. In some cases, increasing
the JVM heap size from 2048 MB to 4096 MB can result in a 20% performance gain. The
JVM heap size should also be adjusted accordingly after adding resources, such as
processors, to the server or partition that hosts the WPS server. It is also recommended
to use the Generational Concurrent (gencon) garbage collection policy because it is
most suitable for Web service transactions.

o With a large volume of disk write traffic to the SIBDB database, BPEDB database, and

BPE log, it is recommended that they be hosted on physical disk arrays, such as those
attached to the IBM ServeRAID MR10M and IBM System Storage DS3400 controllers
used in this study. If the disk arrays are attached to a host controller through a fiber-
channel interface (such as the DS3400), it would be better to host the BPEDB database
on its own separate disk array. This is because, in our testing, the average disk I/O
queue depth becomes greater than 1.0 under peak workload conditions even when we
dedicate a 24-disk array entirely to BPEDB.

o For best performance, cache mirroring and write-through caching in the disk array

controllers should be disabled. However, this is a trade-off between performance and
reliability/availability.

o For data writes to WPS databases and logs, the IBM ServeRAID MR10M disk subsystem

delivers better performance than the IBM System Storage DS3400 disk subsystem. This
can be attributed to the fact that the write-back cache on the MR10M is much closer to
the WPS server than the cache in the DS3400, which is located remotely from the server
over the fiber links.

o It is better to have the DB2 component run on a separate physical server from the WPS

server, especially when there are multiple WPS servers in a cluster configuration.

o Business process modeling applications, such as those used in our benchmark, are
generally processor-intensive. Adding more processors to the WPS server would
certainly increase the throughput of those applications, provided that some J2C
Connection Factories and Activation Specifications would also be increased to
accommodate the higher number of processors as recommended by the WebSphere
Performance Team [13].

o The transaction and compensation logs for each WPS server should be hosted on

separate disks if physical disk arrays are not available. These disks (or disk arrays)
should be local to the WPS server. Hosting the transaction and compensation logs on a
remote server, even on disk arrays, would result in very low performance due to the large
amount of disk writes involved and the latency requirements. Logical disk striping through
the Linux Logical Volume Manager (LVM) is also not very effective in handling the log
traffic.

o The WAS and WPS concurrency parameters, such as thread pools (e.g. default, web

container), connection pools (for BPEDB, CEI ME, SIBDB System, and SIBDB BPC data
sources), J2C connection factories (for BPECF, BPECFC, HTMCF), and J2C Activation
Specifications, should have appropriate values based on the number of processors (as

Performance Analysis
September 2009

Page 28

seen by the operating system). In this study, giving these parameters appropriate values
essentially doubles the benchmark’s overall throughput.

o Tuning DB2 log parameters, such as the maximum storage for lock list, log buffer size,

and log file size, yields only minor (less than 2%) improvement in the overall business
transaction rate.

o The Linux Huge (Large) Page Support is not effective for BPM scenarios.

• Tuning dynamic operations in a WebSphere Virtual Enterprise (WVE) environment

o WebSphere Virtual Enterprise, with its On-Demand Router (ODR) and associated

autonomic managers, creates a virtual, goal-driven, autonomic cluster environment for
SOA applications. Such an environment can optimize resource usage and provide the
capability of responding in real-time to spikes in workload demands (without human
intervention if Automatic Mode is used). This capability includes the activation of new
application server instances on available physical servers to handle the peak workload.

o Through the use of Java, the application servers are really separated from the physical

server hardware. In our setup, application server instances are activated on different
server hardware platforms (Power and x86) to handle the same stream of service
requests. A single DB2 server instance on an x86 server can support multiple WPS
server instances on that x86 server as well as on other Power servers.

o For messaging infrastructure clustering, having the Message Engines running locally in

the same dynamic cluster as the WPS applications is faster, but it severely limits the
overall scalability of a multi-node configuration. For multi-node configurations, it is
recommended that the Message Engines run in their own cluster, separate from the
application cluster. Although desirable, it is not necessary for the Message Engine
cluster to run on different physical servers from those that host the application clusters to
achieve good scalability. In our study, the Message Engine cluster runs on the x3850 M2
server, which hosts DB2 and is also part of the dynamic application cluster.

o Care should be taken when setting the performance goal in the service policy. WVE V6.1

only supports service goals that are related to response times. Setting the service goal
too close to the minimum service response time on a lightly loaded configuration would
never result in additional servers to be activated because the autonomic managers would
determine that starting additional servers would not improve the capability of meeting the
service goal anyway. In our study, we set the service goal to be two times the minimum
service response time.

o It takes at least 3 to 4 minutes from the time a service goal is considered breached until

additional servers are started and running. Even then, it might take a few more minutes
for the new servers to warm up and be able to handle service requests at optimal rates.

o From a pure performance perspective, if a Power server is used to host WPS servers, it

is better to configure a single LPAR that has all the resources on the physical server and
use dedicated disks for transaction and recovery logs than configuring multiple LPARs
with PowerVM virtualization technology. For the benchmark in this study, a single LPAR
that has all four POWER5 cores on an OpenPower 720 server delivers 14% more
business transactions per second than two virtualized LPARs on the same server.
Alternatively, with PowerVM virtualization technology, we can start small and put the
LPAR in shared, uncapped mode so that the LPAR can grow into the full size of the
physical server as workload demand increases.

o The Virtual I/O Server (VIOS) results in higher I/O service times and higher disk

utilization. We have seen the virtual I/O service time as high as three times the dedicated

Performance Analysis
September 2009

Page 29

I/O service time. The VIOS overhead is also responsible for 20% increase in the average
service response time in this study. However, the PowerVM virtualization technology
does allow us to configure the disks as dedicated I/O devices to the LPARs so that I/O
operations to these disks do not go through VIOS. For WPS servers, if we need to use
the PowerVM virtualization technology for availability and other virtualization benefits, we
should host the transaction and compensation logs on physical disks dedicated to each
LPAR.

o As we can see from the performance data in this study, the PowerVM virtualization

technology does have some performance overhead. However, its features and benefits
are quite many, among them:

• Server consolidation of existing workloads onto Power servers, thereby

addressing the challenges of reducing space, power, and overall life-cycle costs
• High availability solutions with Live Partition Mobility (available for POWER6

processors or later only)
• The capability of WebSphere Virtual Enterprise to work with server provisioning

solutions, such as the Tivoli Provisioning Manager (TPM) or Tivoli Intelligent
Orchestrator (TIO), to dynamically allocate new (physical or virtual) servers on
which application server instances can be activated to handle unexpected surges
in workload demands

• Low-cost application security and isolation with EAL4+ certification
• Far better granularity than hardware partitioning techniques (for example,

multiple LPARs can be allocated within a single processor to a granularity of
1/100

th
 of a processor, with 1/10

th
 of a processor being the minimum for an

LPAR)
• The capability of virtualizing and reconfiguring I/O, as well as support for a mix of

shared and dedicated I/O across LPARs
• The shared and uncapped mode, which allows an LPAR to grow to the full size of

the physical server as long as resources are available to handle peak workload
demands

The last two features – the support for dedicated I/O and shared, uncapped LPAR mode
– can help reduce some performance overhead of the PowerVM virtualization technology
in our setup. More specifically, for WPS servers, the transaction and compensation logs
should be hosted on physical disks dedicated to each LPAR. Instead of adding more
processor cores to an LPAR, we can start small and put the LPAR in shared, uncapped
mode where it can use additional available processors on the physical server as
necessary.

o For the business process scenarios considered in this study, the benchmark’s Workload

Driver, the IBM HTTP Server, and the On-Demand Router do not consume much CPU or
I/O resources at run time. The default configurations for the IBM HTTP Server and the
On-Demand Router are found to be more than adequate to support the request rates of
less than 100 requests per second in this study.

Performance Analysis
September 2009

Page 30

References

[1] Services Oriented Architecture (SOA) Entry Points,
http://www-
306.ibm.com/software/solutions/soa/entrypoints/index.html?S_TACT=107AG01W&S_CMP=campaign

[2] WebSphere Application Server,
http://www-306.ibm.com/software/webservers/appserv/was/

[3] WebSphere Process Server: IBM’s New Foundation for SOA,
http://www.ibm.com/developerworks/websphere/library/techarticles/0509_kulhanek/0509_kulhanek.html

[4] Clustering WebSphere Process Server V6.0.2, Part 1: Understanding the topology,
http://www.ibm.com/developerworks/websphere/library/techarticles/0704_chilanti/0704_chilanti.html

[5] IBM Power 570, http://www-03.ibm.com/systems/power/hardware/570/

[6] IBM POWER6 Microarchitecture, IBM Journal of Research and Development,
http://www.research.ibm.com/journal/rd/516/le.html

[7] IBM System x3850 M2,
http://www-07.ibm.com/systems/includes/content/x/pdf/XSD03019USEN.pdf

[8] IBM System x3850 M2 Enterprise Server’s X4 Technology,
http://www-03.ibm.com/systems/x/hardware/enterprise/x3850m2/x4/info.html

[9] Nghiem, Alex (October 8, 2002). The Basic Web Services Stack: IT Web Services: “A Roadmap for
the Enterprise”, Prentice Hall.

[10] SOABench 2005, Version 0.18, Document Owner: Andrew Schofield, Internal IBM Confidential
Document (April 18, 2006). (This document is available only with the approval of the document owner.)

[11] IBM OpenPower 720, http://www.ibm.com/systems/p/hardware/openpower/720/index.html

[12] SOA Performance on Linux: Services and Reuse Entry Point, by Steve Dobbelstein, Khoa Huynh,
Vivek Kashyap, and Mark Peloquin, Internal IBM Document (June 2008)

[13] WebSphere Process Server (WPS) 6.1.0, WebSphere Enterprise Service Bus (WESB) 6.1.0,
WebSphere Business Monitor (Monitor) 6.1.0, WebSphere Adapters (WA) 6.1.0 Performance Report, by
WebSphere Process Server, Enterprise Service Bus, Adapter, and Monitor Performance Teams, Internal
IBM Document (April 2008)

[14] IBM Portal Pack for SOA Configurations, http://www-
01.ibm.com/software/lotus/portal/packforsoa/?S_TACT=107AG01W&S_CMP=campaign

[15] IBM WebSphere Portal 6.1 Performance Tuning Guide, http://www-
01.ibm.com/support/docview.wss?rs=688&uid=swg27013972, by IBM WPLC Performance Team
(October 2008)

[16] Delivering High-Value SOA Information Services, SOA Solutions Whitepaper,
ftp://ftp.software.ibm.com/software/solutions/soa/pdfs/WSW11332-USEN-
00_SOA_BUSINESS_WP_0806A.pdf (2007)

[17] Tuning Your DB2 Data Warehouse, IDUG Podcast, http://www.idug.org/podcast-downloads/344.html

Performance Analysis
September 2009

Page 31

 © IBM Corporation 2009

IBM Systems and Technology Group
3039 Cornwallis Road
Research Triangle Park, NC 27709

Printed in the USA

Warranty Information: For a copy of applicable product warranties, write
to: Warranty Information, P.O. Box 12195, RTP, NC 27709, Attn: Dept.
JDJA/B203. IBM makes no representation or warranty regarding third-
party products or services including those designated as ServerProven
or ClusterProven.

IBM, the IBM logo, eServer, xSeries, X-Architecture, System x, System
p, Power, POWER6, IBM Redbooks and BladeCenter are trademarks
of the International Business Machines Corporation in the United States
and/or other countries. For a complete list of IBM Trademarks, see
www.ibm.com/legal/copytrade.shtml.
Intel, Xeon and Hyper-Threading Technology are trademarks or
registered trademarks of Intel Corporation.
Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.
Linux is a registered trademark of Linux Torvalds in the United States,
other countries, or both.
Microsoft and Windows are registered trademarks of Microsoft
Corporation.

Other company, product, or service names may be trademarks or
service marks of others.

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which IBM
operates.

Information about non-IBM products is obtained from the manufacturers
of those products or their published announcements. IBM has not
tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed
to the suppliers of those products.

Performance is based on measurements using industry standard or
IBM benchmarks in a controlled environment. The actual throughput
that any user will experience will vary depending upon considerations
such as the amount of multiprogramming in the user's job stream, the
I/O configuration, the storage configuration, and the workload
processed. Therefore, no assurance can be given that an individual
user will achieve performance levels equivalent to those stated here.

IBM reserves the right to change specifications or other product
information without notice. References in this publication to IBM
products or services do not imply that IBM intends to make them
available in all countries in which IBM operates. IBM PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions; therefore, this
statement may not apply to you.

The IBM home page on the Internet can be found at ibm.com.

Printed in the USA on recycled paper containing 10% recovered post-
consumer fiber.

